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Chapter 3   Torsion 

 

3.1 Introduction   

Torsion : twisting of a structural member, 

when it is loaded by couples that produce 

rotation about its longitudinal axis 
 

  T1  =  P1 d1  T2  =  P2 d2 

the couples  T1,  T2  are called 

torques, twisting couples or twisting 

moments 

 unit of  T  :  N-m,  lb-ft 

in this chapter, we will develop formulas 

for the stresses and deformations produced 

in circular bars subjected to torsion, such as 

drive shafts, thin-walled members 

analysis of more complicated shapes required more advanced method 

then those presented here 

this chapter cover several additional topics related to torsion, such 

statically indeterminate members, strain energy, thin-walled tube of 

noncircular section, stress concentration, and nonlinear behavior 

 

3.2 Torsional Deformation of a Circular Bar 

consider a bar or shaft of circular cross section twisted by a couple  T, 

assume the left-hand end is fixed and the right-hand end will rotate a small 

angle  &,  called angle of twist 
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if every cross section has the same radius and subjected to the same 

torque, the angle  &(x)  will vary linearly between ends 

 under twisting deformation, it is assumed 

1. plane section remains plane 

2. radii remaining straight and the cross sections remaining plane and 

circular 

3. if  &  is small, neither the length  L  nor its radius will change 

consider an element of the bar  dx,  on its outer surface we choose an 

small element  abcd,   

 

 

 

 

 

 

 

 

during twisting the element rotate a small angle  d&,  the element is in 

a state of pure shear, and deformed into  ab'c'd,  its shear strain  �max  is 
 

         b b'     r d& 
   �max  =  CC  =  CC 
          a b      dx 
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d& / dx  represents the rate of change of the angle of twist  &, denote  

� = d& / dx  as the angle of twist per unit length or the rate of twist, then 

   �max  =  r � 

in general,  &  and  �  are function of  x,  in the special case of 

pure torsion,  �  is constant along the length (every cross section is 

subjected to the same torque) 
 

          &            r & 
   �  =  C  then  �max  =  CC 
          L              L  

 and the shear strain inside the bar can be obtained 

        ! 
   �  =  ! �  =  C �max   
         r 

 for a circular tube, it can be obtained 

      r1    �min  =  C �max   
        r2 

the above relationships are based only upon geometric concepts, they are 

valid for a circular bar of any material, elastic or inelastic, linear or nonlinear 

 

3.3 Circular Bars of Linearly Elastic Materials 

shear stress  $  in the bar of a 

linear elastic material is 

   $  =  G � 

 G : shear modulus of elasticity 
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with the geometric relation of  the shear strain, it is obtained 
 

   $max  =  G r � 
            ! 
   $  =  G ! �  =  C $max 
            r 

$  and  �  in circular bar vary linear with the radial distance  !  from 

the center, the maximum values $max and �max occur at the outer surface 

the shear stress acting on the plane of the 

cross section are accompanied by shear 

stresses of the same magnitude acting on 

longitudinal plane of the bar 

if the material is weaker in shear on 

longitudinal plane than on cross-sectional 

planes, as in the case of a circular bar made of wood, the first crack due 

to twisting will appear on the surface in longitudinal direction 

a rectangular element with sides at 45 o to 

the axis of the shaft will be subjected to 

tensile and compressive stresses 

 

The Torsion Formula 

consider a bar subjected to pure torsion, 

the shear force acting on an element  dA  

is  $ dA,  the moment of this force about 

the axis of bar is  $ ! dA 
 

  dM  =  $ ! dA  

 



 5

 equation of moment equilibrium 

   T  = ∫ dM  = ∫ $ ! dA  =∫ G � !2 dA  = G �∫  !2 dA 
       A           A      A      A 

       =  G � Ip   [$  =  G � !]    

 in which   Ip  = ∫ !2 dA   is the polar moment of inertia 
             A 

     � r4       � d4  
   Ip  =  CC  =  CC   for circular cross section 
      2       32 

 the above relation can be written 

      T 
   �  =  CC 
            G Ip 

 G Ip : torsional rigidity 

 

 the angle of twist  &  can be expressed as 

        T L 
   &  =  � L  =  CC  &  is measured in radians 
        G Ip 

             L      
 torsional flexibility    f  =  CC   
           G Ip         
          G Ip 
 torsional stiffness   k  =  CC 
           L 

 and the shear stress is 

           T      T ! 
   $  =  G ! �  =  G ! CC  =  CC 
          G Ip          Ip 

 the maximum shear stress  $max  at  !  =  r  is 
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       T r     16 T 
   $max  =  CC  =  CC 
        Ip     � d3 

 for a circular tube 

   Ip  = � (r2
4 - r1

4) / 2 = � (d2
4 - d1

4) / 32 

 if the hollow tube is very thin 

   Ip  j  � (r2
2 + r1

2) (r2 + r1) (r2 - r1) / 2 

        =  � (2r2) (2r) (t)  =  2 � r3 t  =  � d3 t / 4 

 

limitations 

 1. bar have circular cross section (either solid or hollow) 

 2. material is linear elastic 

note that the above equations cannot be used for bars of noncircular 

shapes, because their cross sections do not remain plane and their maximum 

stresses are not located at the farthest distances from the midpoint 

 

Example 3-1 

 a solid bar of circular cross section  

 d = 40 mm,  L = 1.3 m,  G = 80 GPa 

 (a) T = 340 N-m,  $max,  & =  ? 

 (b) $all = 42 MPa,  &all = 2.5o,  T = ? 

 (a)      16 T     16 x 340 N-M 
   $max  =  CC  =  CCCCCCC  =  27.1 MPa 
          � d3      � (0.04 m)3 

   Ip  =  � d4 / 32  =  2.51 x 10-7 m4 
           T L         340 N-m x 1.3 m 
   & =  CC  =  CCCCCCCCCC  =  0.02198 rad = 1.26o 
           G Ip    80 GPa x 2.51 x 10-7 m4 
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 (b) due to  $all  =  42 MPa   

   T1 = � d3 $all / 16 = � (0.04 m)3 x 42 MPa / 16 = 528 N-m 

    due to  &all  =  2.5o  =  2.5 x � rad / 180o  =  0.04363 rad 

   T2  =  G Ip &all / L  =  80 GPa x 2.51 x 10-7 m4 x 0.04363 / 1.3 m  

         =  674 N-m 

     thus   Tall  =  min [T1, T2]  =  528 N-m 

 

Example 3-2 

 a steel shaft of either solid bar or circular tube 

 T  =  1200 N-m,  $all  =  40 MPa 

 �all  =  0.75o / m G  =  78 GPa 

  (a) determine  d0  of the solid bar 

 (b) for the hollow shaft, t = d2 / 10, determine d2 

 (c) determine  d2 / d0,  Whollow / Wsolid 

 (a) for the solid shaft, due to  $all  =  40 MPa 

    d0
3  = 16 T / � $all  = 16 x 1200 / � 40  = 152.8 x 10-6 m3 

    d0  =  0.0535 m  =  53.5 mm 

    due to  �all =  0.75o / m  = 0.75 x � rad / 180o / m = 0.01309 rad / m 

    Ip  = T / G �all = 1200 / 78 x 109 x 0.01309 = 117.5 x 10-8 m4 

    d0
4  = 32 Ip / �  = 32 x 117.5 x 10-8 / �  = 1197 x 10-8 m4 

    d0  =  0.0588 m  =  58.8 mm 

    thus, we choose  d0 = 58.8 mm  [in practical design, d0 = 60 mm] 

 (b) for the hollow shaft   

    d1  =  d2  -  2 t  =  d2  -  0.2 d2  =  0.8 d2 
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    Ip  = � (d2
4 - d1

4) / 32  = � [d2
4 - (0.8d2)4] / 32  = 0.05796 d2

4 

    due to  $all  =  40 MPa 

    Ip  =  0.05796 d2
4  =  T r /$all  =  1200 (d2/2) / 40 

    d2
3  =  258.8 x 10-6 m3   

d2  =  0.0637 m  =  63.7 mm 

    due to  �all  =  0.75o / m  =  0.01309 rad / m 

    �all  = 0.01309  = T / G Ip  = 1200 / 78 x 109 x 0.05796 d2
4  

   d2
4  =  2028 x 10-8 m4   

d2  = 0.0671 m  = 67.1 mm 

    thus, we choose  d0 = 67.1 mm   [in practical design, d0 = 70 mm] 

 (c) the ratios of hollow and solid bar are 

    d2 / d0  =  67.1 / 58.8  =  1.14   
     Whollow      Ahollow       � (d2

2 - d1
2)/4 

    CCC  =  CCC  =  CCCCCC  =  0.47 
       Wsolid     Asolid     � d0

2/4 

    the hollow shaft has 14% greater in diameter but 53% less in weight 

 

Example 3-3 

a hollow shaft and a solid shaft has same 

material, same length, same outer radius  R,  

and  ri  =  0.6 R for the hollow shaft 

 (a) for same T, compare their $, �, and W 

 (b) determine the strength-to-weight ratio 

 (a)  ∵ $  =  T R / Ip  �  =  T L / G Ip 

   ∴ the ratio of  $  or  �  is the ratio of  1 / Ip 

   (Ip)H  =  � R2 /2  -  � (0.6R)2 /2  =  0.4352 � R2 
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   (Ip)S  =  � R2 /2  =  0.5 � R2 

   (Ip)S / (Ip)H  =  0.5 / 0.4352  =  1.15 

thus   �1  =  $H / $S  =  (Ip)S / (Ip)H  =  1.15 

also  �2  =  &H / &S  =  (Ip)S / (Ip)H  =  1.15 

     �3  = WH / WS = AH / AS = � [R2 - (0.6R)2] / � R2  = 0.64 

the hollow shaft has  15%  greater in  $  and  &,  but  36%  

decrease in weight 
 

 (b) strength-to-weight ratio  S  =  Tall / W 

   TH  = $max Ip / R  = $max (0.4352 � R4) / R  = 0.4352 � R3 $max 

   TS  =  $max Ip / R  =  $max (0.5 � R4) / R  =  0.5 � R3 $max   

   WH  =  0.64 � R2 L �  WS  = � R2 L � 

     thus  SH  =  TH / WH  =  0.68 $max R / � L 

     SS  =  TS / WS  =  0.5 $max R / � L 

   SH  is  36%  greater than  SS 

 

3.4 Nonuniform Torsion 

 (1) constant torque through each segment 

   TCD  =  - T1  -  T2  +  T3 

   TBC  =  - T1  - T2    TAB  =  - T1 
            n     n  Ti Li 
   &  =  � &i  =  � CC 
            

i=1   i=1 Gi Ipi 

(2) constant torque with continuously 

varying cross section 
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          T dx 
    d&  =  CCC 
      G Ip(x) 
      L             L  T dx 
   &  =  ∫ d&  =  ∫ CCC 
      0        0  G Ip(x) 

 (3) continuously varying cross section and  

 continuously varying torque 
       L            L  T(x) dx 
   &  =  ∫ d&  =  ∫ CCC 
       0        0  G Ip(x) 

 

Example 3-4 

 a solid steel shaft ABCDE,  d  =  30 mm 

 T1  =  275 N-m T2  =  450 N-m 

 T3  =  175 N-m G  =  80 GPa 

 L1  =  500 mm L2  =  400 mm 

 determine  $max  in each part and  &BD 

   TCD  =  T2  -  T1  =  175 N-m 

   TBC  =  - T1  =  - 275 N-m 

      16 TBC      16 x 275 x 103 
   $BC  =  CCC  =  CCCCCC  =  51.9 MPa 
          � d3        � 303 

       16 TCD      16 x 175 x 103 
   $CD  =  CCC  =  CCCCCC  =  33 MPa 
         � d3          � 303 

   &BD  =  &BC  +  &CD   

             � d4         � 304 
    Ip  =  CC  =  CCC  =  79,520 mm2 
      32        32 
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         TBC L1      - 275 x 103 x 500 
   &BC  =  CCC  =  CCCCCCCC  =  - 0.0216 rad 
          G Ip    80 x 103 x 79,520 
       TCD L2    175 x 103 x 400 
   &CD  =  CCC  =  CCCCCCCC  =  0.011 rad 
           G Ip      80 x 103 x 79,520 

   &BD  =  &BC + &CD  = - 0.0216 + 0.011 = - 0.0106 rad = - 0.61o 

 

Example 3-5 

a tapered bar  AB  of solid circular 

cross section is twisted by torque  T 

 d = dA  at A,  d = dB  at B,  dB  ≧ dA 

 determine  $max  and  &  of the bar 

 (a)  T  =  constant over the length, 

     thus  $max  occurs at  dmin [end A] 

       16 T 
   $max  =  CCC 
           � dA

3 

 (b)  angle of twist 

            dB - dA  
   d(x)  =  dA  +  CCC x 
               L 

          � d4      �      dB - dA  4 
   Ip(x)  =  CC  =  C (dA  +  CCC x) 
            32     32           L 

 then     L  T dx     32 T   L      dx 
    &  = ∫ CCC  =  CC ∫ CCCCCCC 
       0   G Ip(x)    � G   0       dB - dA   4 
                (dA  +  CCC x) 
               L 

 to evaluate the integral, we note that it is of the form 
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           dx        1 
   ∫CCCC  =  - CCCCC 
        (a + bx)4       3 b (a + bx)3 

 if we choose  a  =  dA  and  b  =  (dB - dA) / L,  then the integral 

of  &  can be obtained 
 
          32 T L     1     1 
   &  =  CCCCCC ( CC  -  CC ) 
            3�G(dB - dA)    dA

3     dB
3 

 a convenient form can be written 

       T L  �2 + � + 1 
   &  =  CCC ( CCCCC ) 
     G IpA  3 � 3 

 where   �  =  dB / dA IpA  =  � dA
4 / 32 

 in the special case of a prismatic bar,  � = 1,  then  &  =  T L / G Ip 

 

3.5 Stresses and Strains in Pure Shear 

for a circular bar subjected to torsion, 

shear stresses act over the cross sections 

and on longitudinal planes  

an stress element  abcd  is cut 

between two cross sections and between 

two longitudinal planes, this element is in a 

state of pure shear 

we now cut from the plane stress 

element to a wedge-shaped element, denote  

A0  the area of the vertical side face, then 

the area of the bottom face is  A0 tan �,  
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and the area of the inclined face is  A0 

sec � 

 summing forces in the direction of  "� 

   "� A0 sec �  =  $ A0 sin �  +  $ A0 tan � cos � 

 or  "�  =  2 $ sin � cos �  =  $ sin 2� 

 summing forces in the direction of  $� 

    $� A0 sec �  =  $ A0 cos �  -  $ A0 tan � sin � 

 or  $�  =  $ (cos2�  -  sin2�)  =  $ cos 2� 

 "�  and  $�  vary with  �  is plotted in figure 

    ($�)max = $    at  � = 0o 

    ($�)min = - $   at  � = ! 90o 

    ("�)max = ! $  at  � = ! 45o 

the state of pure shear stress is 

equivalent to equal tensile and compressive 

stresses on an element rotation through an 

angle of 45o  

if a twisted bar is made of material that 

is weaker in tension than in shear, failure 

will occur in tension along a helix inclined 

at 45o, such as chalk 

 

Strains in pure shear 

 if the material is linearly elastic 

   �  =  $ / G 
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where  G  is the shear modulus of elasticity 

consider the strains that occur in an 

element oriented at  � = 45o,  "max  =  $ 

applied at 45o  and  "min = - $  applied at  � = - 45o 

 then at  � = 45o 

        "max     � "min      $        � $      $ 
   �max  =  CC  -  CC  =  C  +  CC  =  C (1 + �) 
          E        E        E    E      E 

 at  � = - 45o  �  =  - �max  =  - $ (1 + �) / E  

 it will be shown in next section the following relationship 

         � 
   �max  =  C 
           2 

 

Example 3-6 

a circular tube with  do = 80 mm,  di = 60 mm 

 T  =  4 kN-m G  =  27 GPa 

determine (a) maximum tensile, compressive 

and shear stresses  (b) maximum strains 
 

 (a)  the maximum shear stress is 

          T r       4000 x 0.04 
   $max  =  CC  =  CCCCCCCCC  =  58.2 MPa 
           Ip      � 
              C [(0.08)4 - (0.06)4] 
              32 

     the maximum tensile and compressive stresses are 

   "t  =  58.2 MPa   at  �  =  - 45o 

   "c  =  - 58.2 MPa   at  �  =  45o 
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 (b)  maximum strains 

   �max  =  $max / G  =  58.2 / 27 x 103  =  0.0022 

     the maximum normal strains is 

   �max  =  �max / 2  =  0.011 

   i.e. �t  =  0.011  �c  =  - 0.011 

 

3.6 Relationship Between Moduli of Elasticity  E,  G  and  � 

an important relationship between  

E,  G  and  �  can be obtained 

consider the square stress element  

abcd,  with the length of each side 

denoted as  h,  subjected to pure 

shear stress  $,       then 

   �  =  $ / G 

the length of diagonal  bd  is  √2 h,  

after deformation 
 

   Lbd  =  √2 h (1 + �max) 

 using the law of cosines for  < abd 

        2                    �              � 
   Lbd  =  h2 + h2 - 2 h2 cos ( C + � )  =  2 h2 [ 1 - cos ( C + � )] 
                   2             2 
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                   �           
 then  (1 + �max)2  =  1 - cos ( C + � )  =  1  +  sin � 
                 2   
             2  thus  1  +  2 �max  +  �max  =  1  +  sin �       
 

 ∵  �max  is very small, then  �2
max  →  0,  and  sin �  →  �    

    the resulting expression can be obtained 

    �max  =  � / 2 

 with  �max  =  $ (1 + �) / E  and     �  =  $ / G 

 the following relationship can be written 

           E 
   G  =  CCCC 
     2 (1 + �) 

thus  E,  G  and  �  are not independent properties of a linear elastic 

material 

 

3.7 Transmission of Power by Circular Shafts 

the most important use of circular shafts is to transmit mechanical power, 

such as drive shaft of an automobile, propeller shaft of a ship, axle of bicycle, 

torsional bar, etc. 

a common design problem is the determination of the required size of a 

shaft so that it will transmit a specified amount of power at a specified speed 

of revolution without exceeding the allowable stress 

consider a motor drive shaft, rotating at angular speed  *,  it is 

transmitting a torque  T,  the work done is 
 

  W  =  T &  [T is constant for steady state] 
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 where  &  is angular rotation in radians, ant the power is  dW / dt 

    dW        d & 
  P  =  CC  =  T CC  =  T *   *  :  rad / s 
     dt         dt   

 ∵ *  =  2 � f  f  is frequency of revolution   f : Hz  =  s-1 

 ∴ P  =  2 � f T 

 denote  n  the number of revolution per minute (rpm), then  n = 60 f 

       2 n � T 
 thus  P  =  CCCC  (n = rpm, T = N-m, P = W) 
           60 

in U.S. engineering practice, power is often expressed in horsepower (hp),   

1 hp  =  550 ft-lb / s,  thus the horsepower  H  being transmitted by a 

rotating shaft is 
 
       2 n � T        2 n � T 
   H  =  CCCC  =  CCCC (n = rpm, T = lb-ft, H = hp) 
     60 x 550     33,000 

   1 hp  = 550 lb-ft/s = 550 x 4.448 N x 0.305 m/s = 746 N-m / s 

           = 746 W (W : watt) 

 

Example 3-7 

 P  =  30 kW,   $all  =  42 MPa 

 (a)  n = 500 rpm,  determine  d 

 (b)  n = 4000 rpm, determine  d 

 (a)        60 P    60 x 30 kW 
   T  =  CCC  =  CCCCC  =  573 N-m 
        2 � n       2 � x 500  

         16 T     16 T    16 x 573 N-m 
   $max  =  CC  d 3 = CCC = CCCCCC = 69.5 x 10-6 m3 
          � d 3      � $all     � x 42 MPa 
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   d  =  41.1 mm 

 (b)       60 P      60 x 30 kW 
   T  =  CCC  =  CCCCC  =  71.6 N-m 
          2 � n   2 � x 4000  

     16 T     16 x 71.6 N-m 
   d 3  =  CC  =  CCCCCCC  =  8.68 x 10-6 m3 
     � $all      � x 42 MPa 

   d  =  20.55 mm 

 the higher the speed of rotation, the smaller the required size of the shaft 

 

Example 3-8 

 a solid steel shaft  ABC,  d  =  50 mm 

 motor  A  transmit  50 kW  at  10 Hz 

 PB  =  35 kW, PC  =  15 kW 

 determine  $max  and  &AC,  G  =  80 GPa 

       PA   50 x 103 
   TA  = CC = CCCC =  796 N-m 
           2 � f   2 � 10 

 similarly PB = 35 kN TB = 557 N-m 

   PC  =  15 kN  TC  =  239 N-m 

 then  TAB  =  796 N-m TBC  =  239 N-m 

 shear stress and angle of twist in segment  AB   

       16 TAB      16 x 796 
   $AB  =  CCC  =  CCCC  =  32.4 MPa 
         � d 3     � 503 

       TAB LAB      796 x 1.0 
   &AB  =  CCC  =  CCCCCCC  =  0.0162 rad 
          G Ip                     � 
          80 x 109 C 0.054 
               32 
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 shear stress and angle of twist in segment  BC   

       16 TBC      16 x 239 
   $BC  =  CCC  =  CCCC  =  9.7 MPa 
         � d 3     � 503 
       TBC LBC      239 x 1.2 
   &AB  =  CCC  =  CCCCCCC  =  0.0058 rad 
          G Ip                     � 
          80 x 109 C 0.054 
               32 

 ∴ $max  =  $AB  =  32.4 MPa 

   &AC  =  &AB + &BC  = 0.0162 + 0.0058 = 0.022 rad = 1.26o 

  

3.8 Statically Indeterminate Torsional Members 

torsional member may be statically indeterminate if they are constrained 

by more supports than are required to hold them in static equilibrium, or the 

torsional member is made by two or more kinds of materials 

 flexibility and stiffness methods may be used 

only flexibility method is used in the later 

discussion 

 consider a composite bar  AB  fixed at  A 

 the end plate rotates through an angle  & 

 T1  and  T2  are developed in the 

solid bar and tube, respectively 

 equation of equilibrium 

   T1  +  T2  =  T  

 equation of compatibility 

   &1  =  &2 

 torque-displacement relations 
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       T1 L       T2 L 
   &1  =  CCC  &2  =  CCC 
     G1 Ip1      G2 Ip2 

 then the equation of compatibility becomes 

     T1 L    T2 L 
   CCC  =  CCC 
     G1 Ip1      G2 Ip2 

 now we can solve for  T1  and  T2 

         G1 Ip1        G2 Ip2 
   T1  =  T ( CCCCCC ) T2  =  T ( CCCCCC ) 
           G1 Ip1 + G2 Ip2       G1 Ip1 + G2 Ip2  
 and 
             T L 
    &  =  CCCCCC 
     G1 Ip1 + G2 Ip2 

 

Example 3-9 

 a bar  ACB  is fixed at both ends 

 T0  is applied at point  C 

 AC  :  dA,  LA,  IpA 

 CB  :  dB,  LB,  IpB 

 determine  (a)  TA,  TB  (b)  $AC,  $CB  (c)  &C 

 equation of equilibrium 

   TA  +  TB  =  T0 

 equation of compatibility 

   &1  +  &2  =  0 

 torque-displacement equations 

   &1  =  T0 LA / G IpA  



 21

          TB LA          TB LB 
   &2  =  - CCC  -  CCC 
          G IpA       G IpB 

 then the equation of compatibility becomes 

    T0 LA      TB LA      TB LB 
   CCC  -  CCC  -  CCC  =  0 
     G IpA      G IpA      G IpB 

 TA  and  TB  can be solved 

          LB IpA          LA IpB 
   TA  =  T0 ( CCCCCC )  TB  =  T0 ( CCCCCC ) 
             LB IpA + LA IpB        LB IpA + LA IpB 

 if the bar is prismatic,  IpA  =  IpB  =  Ip 

 then    T0 LB    T0 LA 
    TA  =  CC  TB  =  CC 
          L         L 

 maximum shear stress in  AC  and  BC  are 

        TA dA       T0 LB dA 
   $AC  =  CCC  =  CCCCCCC 
          2 IpA      2 (LB IpA + LA IpB) 
         TB dB       T0 LA dB 
   $CB  =  CCC  =  CCCCCCC 
          2 IpB      2 (LB IpA + LA IpB) 

 angle of rotation at section  C  is 

      TA LA      TB LB       T0 LA LB 
   &C  =  CCC  =  CCC  =  CCCCCCC 
       G IpA     G IpA      G (LB IpA + LA IpB) 

 if the bar is prismatic,  IpA  =  IpB  =  Ip 

 then      T0 LA LB 
    &C  =  CCCC 
           G L Ip 
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3.9 Strain Energy in Torsion and Pure Shear 

consider a prismatic bar  AB  

subjected to a torque  T,  the bar 

twists an angle  & 

if the bar material is linear elastic, 

then the strain energy U of the bar is 
 

  U  =  W  =  T & / 2 

 ∵  &  =  T L / G Ip 

 then      T2 L     G Ip &2 
    U  =  CCC  =  CCC 
       2 G Ip     2 L 

 if the bar is subjected to nonuniform torsion, then 

     n      n  Ti
2 Li 

   U  =  � Ui  =  � CCC 
            i=1      i=1 2 Gi Ipi 

 if either the cross section or the torque varies along the axis, then 

       [T(x)]2 dx              L  [T(x)]2 dx 
   dU  =  CCCC  U  =  ∫dU  =  ∫ CCCC 
         2 G Ip(x)             

0  2 G Ip(x) 

strain energy density in pure shear 

consider a stressed element with each 

side having length  h  and thickness  t,  

under shear stress  $  with shear strain  

� 

 the shear force  V  is 

   V  =  $ h t 
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 and the displacement  �  is 

   �  =  h � 

 for linear elastic material, strain energy stored in this element is 

        V �        $ � h2 t 
   U  =  W  =  CC  =  CCC 
           2         2 

 and the strain energy density  u  =  U / per unit volume, then 

  u  =  $ � / 2  =  $2 / 2 G  =  G �2 / 2 

 

Example 3-10 

 a solid circular bar  AB  of length  L  

 (a) torque  Ta  acting at the free end 

 (b) torque  Tb  acting at the midpoint 

(c) both  Ta  and  Tb  acting 

simultaneously 

 
 Ta = 100 N-m Tb = 150 N-m   

 L = 1.6 m  G = 80 GPa  

Ip = 79.52 x 103 mm4 

 determine the strain energy in each case 

 (a) 
       Ta

2 L  1002 x 106 x 1.6 x 103 
   Ua =  CCC =  CCCCCCCCCCC  =  1.26 J  (N-m) 
        2 G Ip     2 x 80 x 103 x 79.52 x 103 

 (b) 
        Tb

2 (L/2)     Tb
2 L 

   Ub  =  CCCC  =  CCC  =  2.83 J 
          2 G Ip       4 G Ip 
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 (c) 
      n  Ti

2 Li   Ta
2 (L/2)   (Ta + Tb)2 (L/2) 

   Uc  =  � CCC  =  CCCC  +  CCCCCC 
     i=1 2 Gi Ipi     2 G Ip     2 G Ip 
         Ta

2 L   Ta Tb L    Tb
2 L 

        =  CCC  +  CCCC  +  CCC   
        2 G Ip    2 G Ip    4 G Ip 

        =  1.26 J  +  1.89 J  +  2.83 J  =  5.98 J 

 Note that  (c)  is not equal to  (a)  +  (b),  because  U  i  T 2 

 

Example 3-11 

a prismatic bar  AB  is loaded by a 

distributed torque of constant intensity  t  

per unit distance 

 t  =  480 lb-in/in L  =  12 ft  

 G  =  11.5 x 106 psi Ip  =  18.17 in4 

 determine the strain energy 

  T(x)  =  t x 

        L  [(tx)]2 dx   1   L       t2 L3 
   U  =  ∫ CCCC  =  CCC ∫ (tx)2 dx  =  CCC 
       0   2 G Ip       2 G Ip 

0      6 G Ip 
          4802 x (12 x 12)3 
        =  CCCCCCCCC  =  580 in-lb 
      6 x 11.5 x 106 x 17.18 

 

Example 3-12 

a tapered bar  AB  of solid circular 

cross section is supported a torque  T 

 d  =  dA  i  dB  from left to right 

 determine  &A  by energy method 
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     T &A 
   W  =  CC 
        2 
           �       �      dB - dA   4 
   Ip(x)  =  C [d(x)]4  =  C ( dA  +  CCC x ) 
          32      32         L 

       L  [T(x)]2 dx   16 T2   L  dx 
   U  =  ∫ CCCC  =  CC ∫ CCCCCCC 
       0  2 G Ip(x)    � G   0     dB - dA   4 
            ( dA + CCC x ) 
                   L 
 
           16 T2 L     1      1 
       =  CCCCCC  ( CC  -  CC ) 
     3 � G (dB - dA)    dA

3    dB
3 

 with   U  =  W,  then  &A  can be obtained 

          32 T L       1      1 
   &A  =  CCCCCC  ( CC  -  CC ) 
      3 � G (dB - dA)    dA

3     dB
3 

 same result as in example 3-5 

 

3-10 Thin-Walled Tubes 

     

3-11 Stress Concentrations in Torsion 

 

3-12 Nonlinear Torsion of Circular Bars 


