Chapter 3 Torsion
3.1 Introduction

P
Torsion : twisting of a structural member, K e
when it is loaded by couples that produce ,I

it i } of bar
rotation about its longitudinal axis

T\ =P, Ty = Pyd,
T, = Pidg T, = Pyd; =
the couples T,, T, are called Ty T,
torques, twisting couples or twisting *
moments (b)
unitof T : N-m, Ib-ft
in this chapter, we will develop formulas AT T,
| £ A
for the stresses and deformations produced } o o

in circular bars subjected to torsion, such as
drive shafts, thin-walled members

analysis of more complicated shapes required more advanced method
then those presented here

this chapter cover several additional topics related to torsion, such
statically indeterminate members, strain energy, thin-walled tube of

noncircular section, stress concentration, and nonlinear behavior

3.2 Torsional Deformation of a Circular Bar

consider a bar or shaft of circular cross section twisted by a couple T,
assume the left-hand end is fixed and the right-hand end will rotate a small

angle ¢, called angle of twist
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if every cross section has the same radius and subjected to the same
torque, the angle  ¢(x) will vary linearly between ends

under twisting deformation, it is assumed

1. plane section remains plane

2. radii remaining straight and the cross sections remaining plane and

circular
3.if ¢ issmall, neither the length L nor its radius will change
consider an element of the bar dx, on its outer surface we choose an

small element abcd,

———c——p %

during twisting the element rotate a small angle d¢, the element is in
a state of pure shear, and deformed into ab'c'd, itsshear strain = yma IS
b b’ rd¢
ab dx

Ymax =



d¢ / dx represents the rate of change of the angle of twist ¢, denote

0 =d¢ /dx as the angle of twist per unit length or the rate of twist, then
Ymax = 0
in general, ¢ and @ are function of x, in the special case of

pure torsion, 6@ is constant along the length (every cross section is

subjected to the same torque)

r
0 = i then Vmax = —¢
L

and the shear strain inside the bar can be obtained

p ..f’;mx
Yy = pO0 = — yma A
r

for a circular tube, it can be obtained

Ymin —  — Ymax
P)

the above relationships are based only upon geometric concepts, they are

valid for a circular bar of any material, elastic or inelastic, linear or nonlinear

3.3 Circular Bars of Linearly Elastic Materials

shear stress t in the bar of a
] ] .. T 4 N
linear elastic material is v ey y™

T - G y (a)

G : shear modulus of elasticity



with the geometric relation of the shear strain, it is obtained

)

r] Yj l

T = Gpl = —Tma

— (5
T
(ch

7 and y incircular bar vary linear wiwn uie raaia distance p from
the center, the maximum values tmax and ymax OCCUr at the outer surface

the shear stress acting on the plane of the
cross section are accompanied by shear
stresses of the same magnitude acting on

longitudinal plane of the bar

if the material is weaker in shear on
longitudinal plane than on cross-sectional
planes, as in the case of a circular bar made of wood, the first crack due

to twisting will appear on the surface in longitudinal direction

a rectangular element with sides at 45° to
0 " T
the axis of the shat will be subjected to |- —gOR—>

tensile and compressive stresses

The Torsion Formula

consider a bar subjected to pure torsion,
the shear force acting on an element dA
is 7 dA, the moment of this force about

the axis of baris 7 p dA

dM = z7pdA



equation of moment equilibrium

_ _ _ 2 _ 2
T = SAdM = SATpdA —fAGHp dA —GHJ/; p° dA

= GOl [t = G6op]
inwhich 1, = [ p2 dA is the polar moment of inertia
A
rt nd
b = — = — for circular cross section
2 32

the above relation can be written
T

f = ———
Gl,

G |, : torsional rigidity

the angle of twist ¢ can be expressed as
TL

¢ = 0L = — ¢ is measured in radians

torsional flexibility f = —

Gl
) ) Gl
torsional stiffness k =
L
and the shear stress is
T Tp
T = Gpl = Gp— = ——
Gl, Iy

the maximum shear stress 7max at p = r IS



Tmax 2
l, n d

for a circular tube
|p =r (r24 - r14) [12=nm (d24 - d14) /32

if the hollow tube is very thin

l, = w7 +r?)(ra+r)(ra-r)/2
= 72@@NE = 2zt = nd’t/4

limitations

1. bar have circular cross section (either solid or hollow)

2. material is linear elastic

note that the above equations cannot be used for bars of noncircular
shapes, because their cross sections do not remain plane and their maximum

stresses are not located at the farthest distances from the midpoint

Example 3-1
a solid bar of circular cross section
d=40mm, L=13m, G=80GPa
(@ T=340N-m, 7Tpa, ¢= ?

d=15in.

“ !

b) 7. = 42 MPa, =25° T=? I
( ) all ¢a” ‘*—L:Min.—J
(a) 16T 16 x 340 N-M

T = = = 27.1 MPa

nd? 7 (0.04 m)®
l, = =nd'/32 = 251x10"m’
TL 340 N-mx 1.3 m
g= —— = = 0.02198 rad = 1.26°

Gl, 80 GPa x 2.51 x 10" m*



(b) dueto 7ty = 42 MPa
Ti=7d® 74/ 16 = 7 (0.04 m)* x 42 MPa / 16 = 528 N-m
dueto ¢y = 25° ° 25xmrad/180° = 0.04363 rad

T, = Glyda/L = 80GPax251x10" m*x0.04363/1.3 m

= 674 N-m
thus Ty = min[Ty, T] = 528 N-m
Example 3-2 &
a steel shaft of either solid bar or circulartube ~ —— 7
T = 1200N-m, 7y = 40MPa ( j '\ Y )
0w = 075°/m G = 78GPa -
(a) determine do, of the solid bar =

(b) for the hollow shaft, t = d, / 10, determine d,
(C) determine d2 / do, WhoIIOW / Wsolid

(a) for the solid shaft, dueto 7, = 40 MPa
d =16T /77y =16x1200/740 =152.8x10°m’
do = 0.0535m = 53.5mm
dueto O, = 0.75°/m =0.75xmrad/180°/ m=10.01309 rad / m
l, =T/G 0 =1200/78x10°x 0.01309 = 117.5x 10° m*
do' =321,/n =32x1175x10°/7 =1197x10°m*
d = 0.0588m = 588mm

thus, we choose do=58.8 mm [in practical design, do = 60 mm]

(b) for the hollow shaft
d1 = d2 - 2t = d2 - 02d2 = 08d2



l, =n(dy'-d*)/32 =n[dy-(0.8d2)*/32 =0.05796 d,"
dueto 7y = 40 MPa
l, = 0.05796dy" = Tr/ey = 1200 (d2/2) /40
d> = 258.8x10°m°
d, = 0.0637m = 63.7mm
dueto Oy = 0.75°/m = 0.01309rad/m
Oa =0.01309 =T/Gl, =1200/78x 10°x 0.05796 d,"
d' = 2028x10°m*
d, =0.0671m =67.1mm
thus, we choose do=67.1 mm [in practical design, dq = 70 mm]

(c) the ratios of hollow and solid bar are

d,/dp = 67.1/588 = 114

Whollow Anoliow 7 (dy” - di%)/4
= = = 047
Wiolid Asolid 7 do’l4

the hollow shaft has 14% greater in diameter but 53% less in weight

Example 3-3

a hollow shaft and a solid shaft has same
material, same length, same outer radius R, ’ﬁ%\_,\\ ,,..-{\t'{'i.-___
and r; = 0.6R for the hollow shaft (V) - )

(a) for same T, compare their z, 6, and W N

(b) determine the strength-to-weight ratio

@ .t = TR/l 0 = TLI/IGI,
. theratioof t or O istheratioof 1/1,

(l)y = =nR?/2 - =m(0.6R)*/2 = 0.43527R°



(Il)s = nR*/2 = 05xR?
(Il)s/ (s = 05/04352 = 1.15

thus ﬁl TH / Ts = (lp)sl(lp)H = 1.15

also ﬁz = ¢H / ¢s = (Ip)S/(Ip)H = 1.15
s =Wy/Ws=Ay/As=7n[R*-(0.6R)?]/nR* =0.64

the hollow shaft has 15% greater in t and ¢, but 36%

decrease in weight
(b) strength-to-weightratio S = Ty/W

TS = Tmax Ip / R = Tmax (0.5 T R4) / R = 0.5 T R3 Tmax
Wy = 0647R?Ly Ws =nR°Ly

thus Sy = Tu/Wy = 06871mR/yL
Sy is 36% greater than Ss

3.4 Nonuniform Torsion

(1) constant torque through each segment

Vg T, y i Ty
To = -Ti - Te + T A 2 G
AN
Tee = -T1 -T, Tas = -Ty 1\- B c D
Ti I—i —— Lap——Lpc -L Lep—+
¢ = §1¢i = igl— (a)
Gi Iy
(2) constant torque with continuously ..
. . ) I
varying cross section Vi B
}-—x—»‘ Lfdx
L



(3) continuously varying cross section and

T dx

L

)
0

G 1p(x)

Ty

continuously varying torque A L
) ) T (X) dx ifxﬁ dx
¢ = d¢ = | L »
0 ° G 1,(X) (a)
Example 3-4
T T T
asolid steel shaft ABCDE, d = 30mm /& 0 N /=,
' P T M
_ ] _ ] St i
T, 275 N-m T, 450 N-m gy AR
T; = 175N-mG = 80GPa I
L, = 500mm L, = 400mm
determine 7. ineachpartand ¢gp :
: S =
Teo = T, - T, = 175N-m =7 ¢
Tee = -Ty = -275N-m
16 Tac 16 x 275 x 10°
Tgc = = = 51.9 MPa
nd® 7 30°
16 Tep 16 x 175 x 10°
Tcb -— = = 33 MPa
nd® 7 30°
$ep = ¢ec *+ oo
7 d* = 30*
lp = = = 79,520 mm’
32 32

10



Tac Ly - 275 x 10° x 500

Pc = = = -0.0216 rad
Gl, 80 x 10° x 79,520
Teo Lo 175 x 10° x 400
$co = = = 0.011 rad
Gl, 80 x 10° x 79,520
$ep = ¢ec+dep =-0.0216 +0.011 = - 0.0106 rad = - 0.61°

Example 3-5

a tapered bar AB of solid circular

B
; ; ; /4 \ ) \ T
cross section is twisted by torque T ; ¥ j—”

d=d, atA, d=dg atB, dg = d e x——| e

determine 7. and ¢ of the bar

(@ T = constant over the length, ® C)
thus max OCcUrs at  dmin [end A] |
. h L? dp
16T
Tmax —
ﬂdA3

(b) angle of twist

dg -d
dx) = da Ay
L
7'Cd4 T dB-dA 4
W) = — = —( + )
32 32 L
then L Tdx 32T SL dx
% G G O ds - d
p(X) T A + B AX)4

to evaluate the integral, we note that it is of the form

11



; dx 1
(a + bx)* 3b (a+ bx)®

ifwechoose a = dya and b = (dg-da) /L, then the integral

of ¢ can be obtained

32TL 1 1
= (— - —)
37'[G(d5 - dA) dA dB

a convenient form can be written

TL +p+1
¢ = u LS
G Ipa 3B

where ﬁ = dB/dA |p/.\ = 7'EdA4/32

in the special case of a prismatic bar, f=1, then ¢ = TL/GI,

3.5 Stresses and Strains in Pure Shear

for a circular bar subjected to torsion, , if\\ .
. d ¢ E i
shear stresses act over the cross sections e
(a)

and on longitudinal planes

an stress element abcd iIs cut 7

between two cross sections and between l \L ]r
T 0 x

two longitudinal planes, this element is in a g

state of pure shear 4

we now cut from the plane stress r

a b 7 0,
element to a wedge-shaped element, denote \ ‘T \ ; /f;

A, the area of the vertical side face, then | ¢ =

the area of the bottom face is A, tan 0,

: |

TAg secd
D'(JAU secd

TAgtan

(c)



and the area of the inclined face is Ag
sec 0

summing forces in the direction of ¢,

ogAgsecd = TAgsingd +

or o) = 2tsinfcosf =

summing forces in the direction of 7,

toApsec ) = tTAycosf -
or 1, = t(cos’d - sin’h) =
g, and 1, varywith 6@

(T)max =T at 9=0°

(T&)mm =-T at H = i 900

(G)nax=%7T at O==x45°
the state of pure shear stress is

equivalent to equal tensile and compressive
stresses on an element rotation through an
angle of 45°

if a twisted bar is made of material that
is weaker in tension than in shear, failure
will occur in tension along a helix inclined

at 45°, such as chalk

Strains in pure shear

if the material is linearly elastic

y = /G

13

7 A tan 6 cos 6

7.sin 260

7 Aptan 6 sin 6

T COS 260

is plotted in figure

Omin=—7 Omax =T

YA




where G is the shear modulus of elasticity
consider the strains that occur in an
element oriented at 4 = 45°,

O max T

applied at 45° and on,=-t appliedat 60=-4 A

‘ (b
45°

thenat 0=
Emax = Trac 0w D + 2 = = a+v)
E E E E E
at 0=-45° e “emax = -T(1+V)/E

it will be shown in next section the following relationship

7

Emax = —

2

Example 3-6
a circular tube with d, =80 mm, d; =60 mm

T = 4kN-m G = 27GPa «—(@\"’

determine (a) maximum tensile, compressive

9
and shear stresses  (b) maximum strains L J
60
(@) the maximum shear stress is 0.
Tr 4000 x 0.04
Tmax = = = 58.2 MPa
o T . .
—[(0.08)" - (0.06)7]
32

the maximum tensile and compressive stresses are

o = 58.2 MPa at 0 = -45°

Oc

- 58.2 MPa at 0 = 45°

14



¥
‘ Tinax =
0 T || 58.2 MPa

(a)
(b) maximum strains

Ymax = Tmax!/G = 58.2/27x10°

the maximum normal strains is
emax = Ymax/2 = 0.011
le. & = 0.011 & =

-0.011

= 0.0022

T T
7 N

¥
o
0.0¢ s 50
o,
N .'-. \\I\\
W . S 4
b A N
AN 1 A
e P b
#,= 0,001 -.\\ £ = 00011

)

3.6 Relationship Between Moduli of Elasticity E, G and v

an important relationship between
E, G and v can be obtained
consider the square stress element
abcd, with the length of each side
denoted as h, subjected to pure
shear stress t, then
y = 1/G

a

the length of diagonal bd is 2 h,

after deformation
Lpg = \/Zh(l'l'gmax)

using the law of cosines for A abd

2 T

Lbd = h2+h2-2h2005(—+j/)

2

15

d

2h*[1-cos( i +
—+7)]
2



T
then  (1+ém)’ = 1-cos(—+yp) = 1 + siny
2

thus 1 + 2&m + smzax = 1 + siny

émax IS Vvery small, then &%ax — O, and siny — 9

the resulting expression can be obtained

emax = 12

with Emax t(1+v)/E and y = /G

the following relationship can be written

E
G = ——
2(1+v)
thus E, G and v are notindependent properties of a linear elastic

material

3.7 Transmission of Power by Circular Shafts

the most important use of circular shafts is to transmit mechanical power,
such as drive shaft of an automobile, propeller shaft of a ship, axle of bicycle,
torsional bar, etc.

a common design problem is the determination of the required size of a
shaft so that it will transmit a specified amount of power at a specified speed
of revolution without exceeding the allowable stress

consider a motor drive shaft, rotating at angular speed , it is

transmitting a torque T, the work done is

W = T¢ [T is constant for steady state]

16



where ¢ is angular rotation in radians, ant the power is dW /dt

dw d
199

P = —— =
dt dt
w = 2xnf 1 isfrequency of revolution f:Hz = s*

= Tw w . rad/s

P = 2xnfT
denote n the number of revolution per minute (rpm), then n =60 f
2nn T
P = — (n=rpm, T=N-m, P =W)
60

thus

in U.S. engineering practice, power is often expressed in horsepower (hp),
1hp = 550 ft-lb /s, thus the horsepower H being transmitted by a

rotating shaft is

. 2nnT _ 2nnT
60 x 550 33,000

(n=rpm, T = Ib-ft, H = hp)

1hp =550 Ib-ft/s = 550 x 4.448 N x 0.305 m/s = 746 N-m /s
=746 W (W : watt)

Example 3-7
P = 30kw, T = 42 MPa g
(@) n=500rpm, determine d WAl o
(b) n=4000rpm, determine d | " *Bﬁi
() 60 P 60 x 30 kW
T = = ———— = 573N-m
27n 2 7 x 500
16T 5 16T 16 x 573 N-m 6 s
Tmax = d”= = =69.5x 10° m

nd? T Tall 7 X 42 MPa

17



d = 41.1 mm

(b) 60 P 60 x 30 kW
T = = —— = 71.6N-m
27n 2 7 X 4000
s 16 T 16 X 71.6 N-m 6 3
d: = = = 8.68x10°m
T Tall 7 X 42 MPa
d = 20.55mm

the higher the speed of rotation, the smaller the required size of the shaft

Example 3-8
a solid steel shaft ABC, d = 50 mm o f“”m” I
motor A transmit 50kW at 10Hz |== : % %B ] %C
Ps = 35KW, Pc = 15kW - -
determine 7n5 and ¢ac, G = 80GPa
Pa 50 x 103 Ty=796N-m  Tp=55TNem  Te=239N-m
Tan = = = 796 N-m ; 7 e
2nf 2n10 C " .
similarly Pg =35 kN Tg =557 N-m ®
Pc = 15kN Tc = 239 N-m
then Tag = 799 N-m Tgec = 239 N-m
shear stress and angle of twist in segment AB
16 Tas 16 x 796
TAB = = —— = 324 MPa
nd? 7 50°
Tas L 796 x 1.0
bo = ——" = = 0.0162 rad
Gl

T
80 x 10° — 0.05"
32

18



shear stress and angle of twist in segment BC

16 Tgc 16 x 239
Tgc = = = 9.7 MPa
nd? 7 50°
Tec L 239 x1.2
be = ——— = = 0.0058 rad
Gl o 70 A
80 x 10° — 0.05
32

Tmax — Tag = 32.4 MPa
fac = s+ dsc =0.0162 + 0.0058 = 0.022 rad = 1.26°

3.8 Statically Indeterminate Torsional Members

torsional member may be statically indeterminate if they are constrained
by more supports than are required to hold them in static equilibrium, or the
torsional member is made by two or more kinds of materials

flexibility and stiffness methods may be used

A
only flexibility method is used in the later ;‘kmx& B
scussi ———( -1
discussion

consider a composite bar AB fixedat A "
the end plate rotates through an angle ¢ Bﬂmg?@’_\zﬂ
T, and T, are developed in the TM>33'

(b)

solid bar and tube, respectively

. apgs “ A x/TUhe{EJ w/-\ﬂ
equation of equilibrium = J: T
0 \End
Tl + T2 = T . I _‘ plate
(e)
equation of compatibility 5 , g
IA ¢ G T, < ‘/; e

|
[

Bar (1) L ‘

¢1 = ¢2 ! I Srwbe)

(d)

e)

torque-displacement relations

19



T, L T, L
g =
Gl |p1 GZ Ip2

¢ =

then the equation of compatibility becomes

T, L T, L
Gl Ipl GZ Ip2

now we cansolvefor T; and T,

G, | G |
s T(——) T, = T(———
and
TL
¢ =
Example 3-9
abar ACB is fixed at both ends 7,

dy
ha dy
To isapplied at point C ;L@L <
TTU T Ts
AC : da La I R s

CB : ds Lg Il W
determine (@) Ta, Ts (b) 7ac, 8 (C) dc

equation of equilibrium 2/ e B

Ty Ty
[ dprr, |«
TA + TB = To
——Lx 4““_ Lp—
L

(b)

equation of compatibility

¢ + ¢ = 0 A C % B
. . [ {7
torque-displacement equations
(c)
¢1 = To LA/Glp/_\ ¢
A C Y/ B

20 (d)



TgLa Tele
¢ = - -

then the equation of compatibility becomes
To La Ts La Ts L
G IpA G IpA G IpB

Tn and Tg can be solved

Ta = Tof ) Ts = To(
LB IpA + LA IpB I—B IpA + I—A IpB
if the bar is prismatic, l,n = Il = |
then ToL ToL
TA - 0 LB TB - 0 LA
L L

maximum shear stressin AC and BC are

TA dA TO I—B dA
TAC = =
2 1o 2 (Lg loa + La Lg)
TB dB TO I—A dB
TCB = =
2 g 2 (Lg loa + La Lg)

angle of rotation at section C is

Jo = Tala  Tels Tolals
NS lon G lpa G (L lpa + La Ip)
if the bar is prismatic, l,n = Il = |
then Tolals
o = ———

GLI,

21



3.9 Strain Energy in Torsion and Pure Shear

subjected to a torque T, the bar

twists an angle ¢

then the strain energy U of the bar is

consider a prismatic bar AB

if the bar material is linear elastic,

Torque

Th-————mm =

U =W = Tg¢/2

—_

A
.
)

"-.l1

4 = TLIGI,
then  _ TL _ GL# !
2G1, 2L

if the bar is subjected to nonuniform torsion, then

o TEL
; 2
. 2. Gl

Angle of rotation

if either the cross section or the torque varies along the axis, then

[T(x)] dx
2 G 1(X)

strain energy density in pure shear

side having length h and thickness t, Lf

under shear stress 7 with shear strain

7

consider a stressed element with each Tl

the shear force V s

V = tht

22

° 2GI,(x)

L [TOOD* dx



and the displacement ¢ is

for linear elastic material, strain energy stored in this element is

Vo Ty h’t
Uu = W = —— =
2 2
and the strain energy density u = U/ per unit volume, then

u = 79/2 = 712G = Gy*/2

Example 3-10 A B T,
- - J :
a solid circular bar AB of length L } |

(a) torque T, acting at the free end

(b) torque T, acting at the midpoint

. A G Th B
(¢) both T, and T, acting % —
‘ [ i
simultaneously R T
(b)
To=100 N-m T, =150 N-m
L=16m G=80GPa A c T B T

l, = 79.52 x 10° mm* ? —

determine the strain energy in each case

(a)

T.2L 100% x 10° x 1.6 x 10°
U,= = = 1.26J (N-m)
2G, 2 x 80 x 10° x 79.52 x 10°
(b) ) ,
To? (L/2) T2 L
Ub = = = 2.831]

2G1, 4G,



n TEL Ta (LI2) (Ta+ To)* (LI2)
U. = P = +
T 2Gily 2G1, 2G1,
T L TaToL Ty’ L
= + - o+
2G 2G 4G,
= 126J + 189J) + 283J = 598
Notethat (c) isnotequalto (a) + (b), because U ~ T?
Example 3-11
a prismatic bar AB is loaded by a
. . . /"/"/"/"/‘
distributed torque of constant intensity t J, N ,L J,

per unit distance #
t = 480Ilb-infin L 12 ft
G = 115x10°psil, = 18.17in’

determine the strain energy

T(x) = tx
L [(00]* dx 1 L L
= §— = f ()7dx =
° 2Gl, 2G1, ° 6GlI,
480° x (12 x 12)° _
= = 580in-Ib
6x11.5x 10°x 17.18
Example 3-12
a tapered bar AB of solid circular s -
A
cross section is supported a torque T L_A ) Id,,.

d = da ~ dg from leftto right F;_H_,dx

determine ¢, Dby energy method

24



T ¢n

W =
T T dB - d/_\ 4
b(x) = —[dX)]* = —(da + X)
32 32 L
L [TOOT dx 16 T2 | dx
0 261K 2G ° dg - d
p( ) T dy + B~ Ua X)4
L
16 T L 1 1
- ( 3 i 3 )
3nG (dB - d/_\) dA dB
with- U = W, then ¢, can be obtained
32TL 1 1
$a = ( s 3 )
3nG (dB - dA) dA dB

same result as in example 3-5

3-10 Thin-Walled Tubes

3-11 Stress Concentrations in Torsion

3-12 Nonlinear Torsion of Circular Bars
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